Alterations in thin filament length during postnatal skeletal muscle development and aging in mice

نویسندگان

  • David S. Gokhin
  • Emily A. Dubuc
  • Kendra Q. Lian
  • Luanne L. Peters
  • Velia M. Fowler
چکیده

The lengths of the sarcomeric thin filaments vary in a skeletal muscle-specific manner and help specify the physiological properties of skeletal muscle. Since the extent of overlap between the thin and thick filaments determines the amount of contractile force that a sarcomere can actively produce, thin filament lengths are accurate predictors of muscle-specific sarcomere length-tension relationships and sarcomere operating length ranges. However, the striking uniformity of thin filament lengths within sarcomeres, specified during myofibril assembly, has led to the widely held assumption that thin filament lengths remain constant throughout an organism's lifespan. Here, we rigorously tested this assumption by using computational super-resolution image analysis of confocal fluorescence images to explore the effects of postnatal development and aging on thin filament length in mice. We found that thin filaments shorten in postnatal tibialis anterior (TA) and gastrocnemius muscles between postnatal days 7 and 21, consistent with the developmental program of myosin heavy chain (MHC) gene expression in this interval. By contrast, thin filament lengths in TA and extensor digitorum longus (EDL) muscles remained constant between 2 mo and 2 yr of age, while thin filament lengths in soleus muscle became shorter, suggestive of a slow-muscle-specific mechanism of thin filament destabilization associated with aging. Collectively, these data are the first to show that thin filament lengths change as part of normal skeletal muscle development and aging, motivating future investigations into the cellular and molecular mechanisms underlying thin filament adaptation across the lifespan.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduced thin filament length in nebulin-knockout skeletal muscle alters isometric contractile properties.

Nebulin (NEB) is a large, rod-like protein believed to dictate actin thin filament length in skeletal muscle. NEB gene defects are associated with congenital nemaline myopathy. The functional role of NEB was investigated in gastrocnemius muscles from neonatal wild-type (WT) and NEB knockout (NEB-KO) mice, whose thin filaments have uniformly shorter lengths compared with WT mice. Isometric stres...

متن کامل

Tropomodulin 1 directly controls thin filament length in both wild-type and tropomodulin 4-deficient skeletal muscle.

The sarcomeric tropomodulin (Tmod) isoforms Tmod1 and Tmod4 cap thin filament pointed ends and functionally interact with the leiomodin (Lmod) isoforms Lmod2 and Lmod3 to control myofibril organization, thin filament lengths, and actomyosin crossbridge formation in skeletal muscle fibers. Here, we show that Tmod4 is more abundant than Tmod1 at both the transcript and protein level in a variety ...

متن کامل

Dev129171 4351..4362

The sarcomeric tropomodulin (Tmod) isoforms Tmod1 and Tmod4 cap thin filament pointed ends and functionally interact with the leiomodin (Lmod) isoforms Lmod2 and Lmod3 to control myofibril organization, thin filament lengths, and actomyosin crossbridge formation in skeletal muscle fibers. Here, we show that Tmod4 is more abundant than Tmod1 at both the transcript and protein level in a variety ...

متن کامل

Nebulin-deficient mice exhibit shorter thin filament lengths and reduced contractile function in skeletal muscle

Nebulin is a giant modular sarcomeric protein that has been proposed to play critical roles in myofibrillogenesis, thin filament length regulation, and muscle contraction. To investigate the functional role of nebulin in vivo, we generated nebulin-deficient mice by using a Cre knock-in strategy. Lineage studies utilizing this mouse model demonstrated that nebulin is expressed uniformly in all s...

متن کامل

Aberrant developmental titin splicing and dysregulated sarcomere length in Thymosin β4 knockout mice

Sarcomere assembly is a highly orchestrated and dynamic process which adapts, during perinatal development, to accommodate growth of the heart. Sarcomeric components, including titin, undergo an isoform transition to adjust ventricular filling. Many sarcomeric genes have been implicated in congenital cardiomyopathies, such that understanding developmental sarcomere transitions will inform the a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014